Nonlinear cross-bridge elasticity and post-power-stroke events in fast skeletal muscle actomyosin.
نویسندگان
چکیده
Generation of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28-29°C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP]-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle.
منابع مشابه
Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin.
During skeletal muscle contraction, regular arrays of actin and myosin filaments slide past each other driven by the cyclic ATP-dependent interaction of the motor protein myosin II (the cross-bridge) with actin. The rate of the cross-bridge cycle and its load-dependence, defining shortening velocity and energy consumption at the molecular level, vary widely among different isoforms of myosin II...
متن کامل3-D structural analysis of the crucial intermediate of skeletal muscle myosin and its role in revised actomyosin cross-bridge cycle
Skeletal myosin S1 consists of two functional segments, a catalytic-domain and a lever-arm. Since the crystal structure of ADP/Vi-bound S1 exhibits a strong intramolecular flexure between two segments, inter-conversion between bent and extended forms; i.e. "tilting of the lever-arm" has been accepted as the established molecular mechanism of skeletal muscle contraction. We utilized quick-freeze...
متن کاملMechanics of the power stroke in myosin II.
Power stroke in skeletal muscles is a result of a conformational change in the globular portion of the molecular motor myosin II. In this paper we show that the fast tension recovery data reflecting the inner working of the power stroke mechanism can be quantitatively reproduced by a Langevin dynamics of a simple mechanical system with only two structural states. The proposed model is a general...
متن کاملInitiation of the power stroke in muscle: insights from the phosphate analog AlF4.
Motile forces in muscle are generated by the so-called "power stroke," a series of structural changes in the actomyosin cross-bridge driven by hydrolysis of ATP. The initiation of this power stroke is closely related to phosphate release after ATP cleavage and to the change of the myosin head from weak, nonstereospecific actin attachment to strong, stereospecific binding. The exact sequence of ...
متن کاملCharacterization of actomyosin bond properties in intact skeletal muscle by force spectroscopy.
Force generation and motion in skeletal muscle result from interaction between actin and myosin myofilaments through the cyclical formation and rupture of the actomyosin bonds, the cross-bridges, in the overlap region of the sarcomeres. Actomyosin bond properties were investigated here in single intact muscle fibers by using dynamic force spectroscopy. The force needed to forcibly detach the cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 105 8 شماره
صفحات -
تاریخ انتشار 2013